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Abstract A known generalization of the Stillinger-Lovett sum rule for a guest charge im-
mersed in a two-dimensional one-component plasma (the second moment of the screening
cloud around this guest charge) is more simply retrieved, just by using the BGY hierarchy
for a mixture of several species; the zeroth moment of the excess density around a guest
charge immersed in a two-component plasma is also obtained. The moments of the electric
potential are related to the excess chemical potential of a guest charge; explicit results are
obtained in several special cases.

Keywords Coulomb systems · Two dimensions · Potential fluctuations · Sum rules

1 Introduction

One of us (L.Š.) has derived a generalization of the Stillinger-Lovett sum rule for a guest
charge immersed in a two-dimensional one-component plasma [1]: an exact simple expres-
sion for the second moment of the screening cloud around the guest charge was obtained,
by using a mapping technique onto a discrete one-dimensional anticommuting-field theory.
In the present paper, we first show that the same result can be obtained in a simpler way by
just using the BGY hierarchy, which provides also more general results.

The excess chemical potential of a guest charge (which can be expressed in terms of
the charge density of the screening cloud) has an expansion in powers of the guest-particle
charge Ze, which allows to compute the average of powers (moments) of the electric poten-
tial.
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We consider a classical (i.e. non-quantum) system of charged particles located in an infi-
nite two-dimensional (2D) plane of points r ∈ R2. According to the laws of 2D electrostatics,
the particles can be thought of as infinitely long charged lines in the 3D which are perpen-
dicular to the 2D plane. The electrostatic potential v at a point r, induced by a unit charge at
the origin 0, is thus given by the 2D Poisson equation

�v(r) = −2πδ(r). (1.1)

The solution of this equation, subject to the boundary condition ∇v(r) → 0 as |r| → ∞,
reads

v(r) = − ln

(
r

L

)
, (1.2)

where r = |r| and the free length constant L, which determines the zero point of the poten-
tial, will be set for simplicity to unity. The Fourier component of this potential ṽ(k) ∝ 1/k2

exhibits the characteristic singularity at k = 0, which maintains many generic properties
(like screening) of “real” 3D charged systems.

A general Coulomb system consists of M mobile species α = 1,2, . . . ,M with the cor-
responding charges eα (which may be integer multiples of the elementary charge e). Mobile
particles may be embedded in a fixed uniform background of charge density ρb . The most
studied models are the one-component plasma (OCP), which corresponds to M = 1 with
e1 = e and ρb of opposite sign, and the symmetric two-component plasma (TCP), which
corresponds to M = 2 with e1 = e, e2 = −e, ρb = 0. The interaction energy of a configura-
tion {ri , eαi

} of the charged particles plus the background is

E =
∑
i<j

eαi
eαj

v(|ri − rj |) +
∑

i

eαi
φb(ri ) + Eb−b, (1.3)

where φb(r) is the one-body potential created by the background and the background-
background energy term Eb−b does not depend on the particle coordinates. In the case of
point particles, for many-component systems with at least two oppositely species, the singu-
larity of the Coulomb potential (1.2) at the origin r = 0 prevents, for small enough tempera-
tures, the thermodynamic stability against the collapse of positive-negative pairs of charges.
In those cases, one introduces to v a short-range repulsion which prevents the collapse.

The Coulomb system is considered in thermodynamic equilibrium, at inverse temperature
β = 1/(kBT ). The thermal average over an infinite neutral system will be denoted by 〈· · ·〉.
In terms of the microscopic density of particles of species α, n̂α(r) = ∑

i δα,αi
δ(r − ri ),

the microscopic total number density and the microscopic total charge density are defined,
respectively, by

n̂(r) =
∑

α

n̂α(r), ρ̂(r) =
∑

α

eαn̂α(r) + ρb. (1.4)

The microscopic electrostatic potential created by the particle-background system at point r
is given by

φ̂(r) =
∫

dr′v(r − r′)ρ̂(r′). (1.5)

At the one-particle level, the homogeneous number density of species α and the total particle
number density are given respectively by

nα = 〈n̂α(r)〉, n = 〈n̂(r)〉. (1.6)
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The charge density ρ = 〈ρ̂(r)〉 vanishes due to the charge neutrality of the system. At the
two-particle level, one introduces the translationally invariant two-body densities

n
(2)

αα′(|r − r′|) =
〈∑

i 
=j

δα,αi
δ(r − ri )δα′,αj

δ(r′ − rj )

〉

= 〈n̂α(r)n̂α′(r′)〉 − 〈n̂α(r)〉δα,α′δ(r − r′). (1.7)

It is useful to consider also the pair distribution functions

gαα′(|r − r′|) = n
(2)

αα′(|r − r′|)
nαnα′

, (1.8)

the (truncated) pair correlation functions hαα′ = gαα′ −1, as well as the three-body analogous
quantities

g
(3)

αα′α′′(r, r′, r′′) = n
(3)

αα′α′′(r, r′, r′′)
nαnα′nα′′

(1.9)

and the (truncated) three-body correlation function

h
(3)

αα′α′′(r, r′, r′′) = g
(3)

αα′α′′(r, r′, r′′) − hαα′(|r − r′|) − hα′α′′(|r′ − r′′|)
−hα′′α(|r′′ − r|) − 1. (1.10)

The paper is organized as follows. In Sect. 2, we use the BGY hierarchy for studying the
general mixture of M species of mobile particles embedded in a fixed uniform background.
By taking the limit of one of the densities going to zero, we get the case of a guest charge.
We retrieve the second moment of the screening cloud around a guest charge immersed in
an OCP; we get also the zeroth moment of the excess total number density around a guest
charge immersed in a TCP. In Sect. 3, the general formalism for relating the moments of
the electric potential to the excess chemical potential of a guest charge is established. The
following sections study special cases when explicit calculations are possible: the high-
temperature (Debye-Hückel) limit in Sect. 4, the OCP at βe2 = 2 in Sect. 5, the TCP in
Sect. 6. Section 7 is a Conclusion.

2 Sum Rules for a Guest Charge Immersed in a Coulomb System

We wish to rederive and extend the result of [1] about the 2D OCP in which a point guest
charge Ze is immersed. Let the charge density at r knowing that there is a guest charge Ze

at the origin be ρ(r|Ze,0). In [1], its second moment was shown to be

∫
drr2ρ(r|Ze,0) = − 2

πβen

[
Z

(
1 − βe2

4

)
+ Z2 βe2

4

]
. (2.1)

Our rederivation uses only the BGY hierarchy.
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2.1 General Sum Rule for a Mixture with a Background

We start with the mixture of M mobile species, with a fixed uniform background, described
in the Introduction. Finally, we shall consider a mixture of only 2 species with respective
charges e1 = e and e2 = Ze; at the end, the density n2 will be chosen as 0, leaving only one
guest charge. But for being able to consider the TCP as well, we start with the more general
case of M mobile species. The neutrality constraint is

∑
α

nαeα = −ρb. (2.2)

The mixture with a background has been studied in three dimensions by Suttorp and van
Wonderen [2]. They used the BGY hierarchy and thermodynamical properties of the system
for deriving, among other things, a second-moment sum rule, which however involves some
thermodynamical functions (the partial derivatives of each density nα with respect to the
background density nb); there is no explicit expression for these partial derivatives. Fortu-
nately, we found that, in two dimensions, the formalism becomes much simpler and only the
BGY hierarchy has to be used (the thermodynamical properties are no longer involved).

The second equation of the BGY hierarchy [3], with hαα′(r) the correlation function
between a particle of species α at r and a particle of species α′ at the origin, is

β−1∇hαα′(r) = −
∑
α′′

nα′′
∫

dr′′ hα′α′′(r ′′)eαeα′′∇v(|r − r′′|)

−hαα′(r)eαeα′∇v(r) − eαeα′∇v(r)

−
∑
α′′

nα′′
∫

dr′′ h(3)

αα′α′′(r,0, r′′)eαeα′′∇v(|r − r′′|). (2.3)

The integral in the first term in the rhs of (2.3) is proportional to the electric field at r due to
the charge distribution hα′α′′ which has a circular symmetry around the origin. Thus, using
Newton’s theorem, one can rewrite this integral as

∫
dr′′ hα′α′′(r ′′)∇v(|r − r′′|) = ∇v(r)

∫
r ′′<r

dr′′ hα′α′′(r ′′). (2.4)

The integral in the rhs of (2.4) can be written as
∫

r ′′<r
· · · = ∫ · · · − ∫

r ′′>r
· · · and the perfect

screening of the charge eα′ gives [4]

∑
α′′

eα′′nα′′
∫

dr′′ hα′α′′(r ′′) = −eα′ . (2.5)

Therefore (2.3) can be rewritten as

β−1∇hαα′(r) = eα

∑
α′′

nα′′eα′′∇v(r)

∫
r ′′>r

dr′′ hα′α′′(r ′′) − hαα′(r)eαeα′∇v(r)

− eα

∑
α′′

nα′′
∫

dr′′ h(3)

αα′α′′(r,0, r′′)eα′′∇v(|r − r′′|). (2.6)

In order to make a second moment to appear, we take the scalar product of both sides of
(2.6) with r and integrate on r. Integrating by parts the lhs and performing the integration
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on r first in the first term of the rhs, one finds

−2β−1
∫

drhαα′(r) = −πeα

∑
α′′

nα′′eα′′
∫

dr r2hα′α′′(r) + eαeα′
∫

drhαα′(r)

+ eα

∑
α′′

nα′′eα′′
∫

dr d(r′′ − r)h
(3)

αα′α′′(r,0, r′′)
(r − r′′) · r
(r − r′′)2

(2.7)

(in the last term, since h(3) depends only on r and the difference r′′ − r, we have replaced the
integration on r′′ by an integration on r′′ − r). An important simplification has occurred in
2D where r · ∇v(r) has the constant value −1, while in three dimensions, with the potential
v(r) = 1/r , one finds −v(r), a result which has led to a more complicated calculation in
[2].

Now, we multiply both sides of (2.7) by nα and sum on α. The term involving h(3) can
be simplified by using symmetries under permutations of the variables. Indeed, h(3) has the
symmetry property

h
(3)

αα′α′′(r,0, r′′) = h
(3)

α′′α′α(r
′′,0, r). (2.8)

Thus, interchanging the summation variables α and α′′, and the variables r and r′′, we obtain

∑
α,α′′

nαeαnα′′eα′′
∫

d(r′′ − r)h
(3)

αα′α′′(r,0, r′′)
(r − r′′) · r
(r − r′′)2

=
∑
α,α′′

nαeαnα′′eα′′
∫

d(r′′ − r)h
(3)

αα′α′′(r,0, r′′)
(r′′ − r) · r′′

(r − r′′)2

= 1

2

∑
α,α′′

nαeαnα′′eα′′
∫

d(r′′ − r)h
(3)

αα′α′′(r,0, r′′), (2.9)

where the last line is the half sum of the two first ones.
Using (2.9) in (2.7) gives

−2β−1
∑

α

nα

∫
drhαα′(r) = πρb

∑
α′′

nα′′eα′′
∫

dr r2hα′α′′(r) + eα′
∑

α

nαeα

∫
drhαα′(r)

+ 1

2

∑
α,α′′

nαeαnα′′eα′′
∫

dr d(r′′ − r) h
(3)

αα′α′′(r,0, r′′). (2.10)

For the second term in the rhs of (2.10), perfect screening [4] gives −e2
α′ . For the last term

in the rhs of (2.10), perfect screening gives

+1

2

∑
α,α′′

nαeαnα′′eα′′
∫

dr d(r′′ − r)h
(3)

αα′α′′(r,0, r′′)

= −1

2

∑
α′′

nα′′eα′′(eα′ + eα′′)

∫
dr hα′α′′(r)

= 1

2

[
e2
α′ −

∑
α′′

nα′′e2
α′′

∫
drhα′α′′(r)

]
. (2.11)



618 B. Jancovici, L. Šamaj

Thus (2.10) becomes the general second-moment sum rule

−βπρb

∑
α

nαeα

∫
dr r2hα′α(r) = 1

2

∑
α

nα(4 − βe2
α)

∫
drhα′α(r) − 1

2
βe2

α′ . (2.12)

By multiplying (2.12) by nα′eα′ and summing on α′, one recovers the usual Stillinger-
Lovett sum rule [3]. But (2.12) is a stronger sum rule.

2.2 Guest Charge in a One-Component Plasma

We come to the case of a mixture of two species, with charge e1 = e and density n1, charge
e2 = Ze and density n2, respectively. We choose α′ = 2 in (2.12). For dealing with one
guest charge Ze only, we set n2 = 0, n1 = n, −ρb = ne; n times the integral of h21 is −Z,
by perfect screening. The sum rule (2.12) becomes

βπn2e2
∫

dr r2h21(r) = −2

[
Z

(
1 − βe2

4

)
+ Z2 βe2

4

]
. (2.13)

Since ρ(r|Ze,0) = neh21(r), (2.13) is (2.1).
This result (2.1) can also be retrieved by a different method in the next subsection.

2.3 Another Derivation

(2.1) can be derived in another way if we assume that this second moment can be expanded
in integer powers of Z.

In the limit of small Z, the term linear in Z in (2.1) can be obtained by linear response
theory. Indeed, if we introduce a guest charge Ze, located at the origin, into an OCP, the
additional Hamiltonian is

Ĥ ′ = Zeφ̂(0), (2.14)

where φ̂(0) is the microscopic electric potential created by the OCP at the origin. To first
order in Z, the charge density at r is

ρ(r|Ze,0) = −β〈ρ̂(r)Zeφ̂(0)〉T = −Zeβ

∫
dr′v(r ′)〈ρ̂(r)ρ̂(r′)〉T, (2.15)

where 〈· · ·〉T denotes a truncated average. We define the Fourier transforms as

f̃ (k) =
∫

dr exp(ik · r)f (r). (2.16)

Then, the Fourier transform of ρ(r|Ze,0) is

ρ̃(k|Ze) = −βZe
2π

k2
S̃(k), (2.17)

since the Fourier transform of v(r) is 2π/k2 and the Fourier transform of the correlation of
charge densities is S̃(k). For small k, S̃(k) has the expansion [3]

S̃(k) = k2

2πβ
− (1 − βe2/4)k4

4π2nβ2e2
+ · · · . (2.18)
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Therefore, we get the zeroth moment
∫

dr ρ(r|Ze,0) = −Ze, (2.19)

in agreement with equation (1.20) in [1], and the part linear in Z of the second moment
(2.1).

It may be remarked that the k4 term of (2.18) is related to the compressibility, which is
exactly known only for the 2D OCP [5]. Therefore, no extension to 3D, with a closed result,
seems possible.

In the opposite case of large Z, the impurity expels the mobile particles from a large
region around it, leaving only the background. Essentially, ρ(r|Ze,0) = −ne for r < R,
where R is some large radius, and ρ(r|Ze,0) = 0 for r > R (there is a transition region [6]
of width of the order n−1/2, but in the limit of large Z, it gives a correction of lower order
in Z). The radius R is determined by the perfect screening condition (2.19) which gives
R2 = Z/(πn). The second moment is

∫
dr r2ρ(r|Ze,0) = −neπR4/2 = −Z2 e

2πn
, Z → ∞, (2.20)

which is the Z2 term of (2.1), and this is the highest-order power of Z in the second moment.
The same argument extended to 3D gives

∫
dr r2ρ(r|Ze,0) = −(3Z)5/3 e

5(4πn)2/3
, Z → ∞. (2.21)

Therefore, in 3D, the second moment is not a polynomial in Z, and no exact formula valid
for any Z can be obtained by the present method.

2.4 Guest Charge in a Two-Component Plasma

A sum rule for the TCP can also be obtained from (2.12). Now, we consider a mixture of
three species, with charge e1 = e and density n1 = n+, charge e2 = −e and density n2 = n−,
charge e3 = Ze and density n3, respectively. There is no background (ρb = 0). We choose
α′ = 3 in (2.12). Finally, for dealing with one guest charge Ze only, we set n3 = 0, n+ = n−
(neutrality); the system is stable against collapse if βe2 < 2 and βZe2 < 2. We call n =
n+ + n− the total density of the TCP. In (2.12) appears the quantity

n+h31(r) + n−h32(r) = n(r|Ze,0) − n, (2.22)

which is the excess density around the guest charge Ze. Then, (2.12) becomes a sum rule
for the zeroth moment of this excess density:

∫
dr [n(r|Ze,0) − n] = Z2 βe2

4 − βe2
. (2.23)

This result is a generalization of the compressibility sum rule [7]
∫

dr [n(r| ± e,0) − n] = ∂n

∂(βp)
− 1 (2.24)

with the use of the exact equation of state βp = n(1 − βe2/4), where p is the pressure.
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2.5 Mixture without a Background

In the case ρb = 0, another derivation of (2.12) is possible starting from the known equation
of state [8]

βp =
∑

α

(
1 − βe2

α

4

)
nα. (2.25)

The M-component plasma may be described in the grand-canonical ensemble, with M

chemical potentials μα (actually [9], the system turns out to be neutral in the thermody-
namic limit, and M − 1 chemical potentials would suffice for determining the state of the
system; but here it is more convenient to use M chemical potentials). The pressure p is
given by βp = lim(1/V ) lnΞ , where V is the volume (here area) of the system, Ξ is the
grand partition function, and lim is the thermodynamic limit. Taking the partial derivative
of (2.25) with respect to βμα′ gives

nα′ =
∑

α

(
1 − βe2

α

4

)(
nαnα′

∫
drhαα′(r) + nα′δα,α′

)
, (2.26)

which is (2.12) with ρb = 0.

3 Guest Charge and Potential Fluctuations

Putting a guest particle of charge Ze at the origin r = 0, the original Hamiltonian H0 of
the infinite Coulomb system modifies to H = H0 + Zeφ̂(0), where φ̂(0) is the microscopic
electric potential created at the origin by the Coulomb system. The charge density around
the guest charge, at point r, is thus expressible as

ρ(r|Ze,0) = 〈ρ̂(r) exp[−βZeφ̂(0)]〉
〈exp[−βZeφ̂(0)]〉 , (3.1)

where 〈· · ·〉 denotes the thermal average over the homogeneous system with the Hamiltonian
H0.

Let μex
Ze denotes the excess (i.e., over ideal) chemical potential of the guest charge, i.e.

the reversible work which has to be done to bring the guest particle of charge Ze from
infinity into the bulk interior of the considered Coulomb plasma. By the coupling parameter
technique [7], this chemical potential can be represented in terms of the charge density (3.1)
as follows

μex
Ze = e

∫ Z

0
dZ′

∫
drv(r)ρ(r|Z′e,0). (3.2)

With regard to the representation (3.1), μex
Ze can be expressed as

−βμex
Ze =

∫ −βZe

0
dx

〈φ̂ exp(xφ̂)〉
〈exp(xφ̂)〉 . (3.3)

Here, since the thermal averages are point-independent, we use the notation φ̂ ≡ φ̂(0).
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Let us recall some basic information about the cumulant expansion. Let φ̂ be a random
variable with the probability distribution P (φ̂). The cumulant expansion is defined by

〈exp(xφ̂)〉 = exp

( ∞∑
l=1

xl

l! 〈φ̂l〉c
)

, (3.4)

where x is any complex number and 〈φ̂l〉c are the cumulants. They are combinations of the
standard moments 〈φ̂l〉. Differentiating the equality (3.4) with respect to x gives

d

dx

∞∑
l=0

xl

l! 〈φ̂l〉 = exp

( ∞∑
l=1

xl

l! 〈φ̂l〉c
)

d

dx

∞∑
l=1

xl

l! 〈φ̂l〉c. (3.5)

Equating the coefficients of the same power of x in both sides of (3.5) gives the recursion
formula

〈φ̂l〉c = 〈φ̂l〉 −
l−1∑
k=1

(
l − 1

k − 1

)
〈φ̂k〉c〈φ̂l−k〉. (3.6)

The first cumulants read

〈φ̂〉c = 〈φ̂〉,
〈φ̂2〉c = 〈φ̂2〉 − 〈φ̂〉2, (3.7)

〈φ̂3〉c = 〈φ̂3〉 − 3〈φ̂2〉〈φ̂〉 + 2〈φ̂〉3,

etc. In the theory of fluids, the cumulants of type (3.7) are referred to as truncations, and
therefore we shall use the notation 〈φ̂l〉c ≡ 〈φ̂l〉T.

Since it holds

〈φ̂ exp(xφ̂)〉
〈exp(xφ̂)〉 = d

dx
ln〈exp(xφ̂)〉, (3.8)

the excess chemical potential (3.3) is expressible as

−βμex
Ze = ln〈exp(−βZeφ̂)〉. (3.9)

Based on the recapitulation in the above paragraph, μex
Ze is expressible either in the form of

a cumulant expansion

−βμex
Ze =

∞∑
l=1

(−βZe)l

l! 〈φ̂l〉T, (3.10)

or in the form of the standard moment expansion

exp
(−βμex

Ze

) = 〈exp(−βZeφ̂)〉 ≡ 1 +
∞∑
l=1

(−βZe)l

l! 〈φ̂l〉. (3.11)

It stands to reason that the expansions (3.10) and (3.11) are valid provided all moments exist.
We conclude that the knowledge of the excess chemical potential of the guest particle with
an arbitrary charge provides the exact information about all moments of the electrostatic
potential at a point of the infinite homogeneous Coulomb system.
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Going to the infinite system via the thermodynamic limit of a finite system with a disc
geometry [10], the fluctuations of the potential at any point become infinite due to the pres-
ence of dipoles near the boundary. Here, the potential moments are defined directly for an
infinite space, without the presence of a boundary. This corresponds to going to the infinite
system via the thermodynamic limit of a finite system, e.g., with periodic boundary con-
ditions, formulated on the surface of a sphere and so on. We thus expect that the average
potential at a point is equal to zero and all its moments are finite.

Since in 2D the potential (1.2) is dimensionless, φ̂ has the dimension of the elementary
charge e. It is therefore useful to introduce the dimensionless microscopic quantity ψ = φ̂/e

with the probability distribution P (ψ). Setting in (3.11) βZe2 = ik, one gets

exp
(−βμex

Ze

)∣∣
βZe2=ik

= 〈exp(−ikψ)〉 =
∫ ∞

−∞
dψ e−ikψP (ψ) ≡ P̃ (k), (3.12)

where P̃ (k) is the Fourier component of the ψ -distribution. The original probability distri-
bution P (ψ) can be obtained by the Fourier inversion of this relation

P (ψ) =
∫ ∞

−∞

dk

2π
e−ikψ exp

(−βμex
Ze

)∣∣
βZe2=ik

. (3.13)

All that has been said in this section is valid also for v being the pure Coulomb potential
plus any type of short-distance regularization.

4 High-Temperature Limit

The high-temperature (weak-coupling) limit of Coulomb systems is described rigorously
by the Debye-Hückel theory [11, 12]. In 2D, the two-body Ursell functions U of charged
species are given by [13]

Uαα′(r, r′) ≡ n
(2)

αα′(r, r′) − nαnα′ = −eαnαeα′nα′βK0(κ|r − r′|), (4.1)

where K0 is a modified Bessel function [14] and κ = (2πβ
∑

α e2
αnα)

1/2 is the inverse Debye
length.

The potential-potential correlation function can be calculated directly from the definition

〈φ̂(0)φ̂(r)〉T =
∫

dr1v(r − r1)

∫
dr2 v(r2)〈ρ̂(r1)ρ̂(r2)〉T

=
∫

dr1v(r − r1)

∫
dr2 v(r1 − r2)〈ρ̂(0)ρ̂(r2)〉T. (4.2)

Using for the Coulomb potential the expansion in polar coordinates

v(r1 − r2) = − ln |r1 − r2| = − ln r> +
∞∑
l=1

1

l

(
r<

r>

)l

cos l(θ1 − θ2) (4.3)

with r< = min{r1, r2} and r> = max{r1, r2}, and taking into account the screening sum rule
[3] ∫

dr2 〈ρ̂(0)ρ̂(r2)〉T = 0, (4.4)
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the second integral on the rhs of (4.2) can be expressed as
∫

dr2 v(r1 − r2)〈ρ̂(0)ρ̂(r2)〉T = −
∫ ∞

r1

dr2 2πr2 ln

(
r2

r1

)
〈ρ̂(0)ρ̂(r2)〉T. (4.5)

Considering the charge correlation function

〈ρ̂(0)ρ̂(r2)〉T =
∑
α,α′

eαeα′ [U(2)

αα′(r2) + nαδαα′δ(r2)]

= − κ4

(2π)2β
K0(κr2) + κ2

2πβ
δ(r2) (4.6)

in (4.5) implies, after an integration by parts,
∫

dr2 v(r1 − r2)〈ρ̂(0)ρ̂(r2)〉T = κ2

2πβ
K0(κr1). (4.7)

Inserting this relation into (4.2) and applying once more the expansion (4.3) results into

β〈φ̂(0)φ̂(r)〉T = − ln r − K0(κr). (4.8)

This procedure will be repeated, without going into details, also in the cases treated in the
next sections.

The result (4.8) has the correct large-distance asymptotic [15]

β〈φ̂(0)φ̂(r)〉T ∼
r→∞− ln r. (4.9)

In the zero-distance limit r → 0, using the expansion

K0(x) = −C − ln(x/2) + O(x2 lnx) (4.10)

with C being the Euler number, the one-point second-moment fluctuation formula for the
potential reads

β〈φ̂2〉T = C + ln(κ/2). (4.11)

One can obtain the last result in an alternative way by considering the charge density
induced around the guest charge [1]

ρ(r|Ze,0) = −Ze
κ2

2π
K0(κr). (4.12)

Then, according to (3.2),

−βμex
Ze = −βe2

∫ Z

0
dZ′ Z′ κ2

2π

∫ ∞

0
dr 2πr ln rK0(κr)

= β(Ze)2

2
[C + ln(κ/2)]. (4.13)

With regard to the cumulant expansion (3.10), we recover the previous result (4.11).
From (3.10) and (4.13), all the higher-order truncated moments 〈φ̂l〉T with l ≥ 3 vanish

in the Debye-Hückel limit; this indicates a Gaussian distribution for the one-point potential
in this limit. We shall return to this problem and present all truncated potential moments, for
the TCP, in a high-temperature limit going beyond the Debye-Hückel limit, in Sect.6.
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5 One-Component Plasma at βe2 = 2

The 2D OCP is exactly solvable in terms of free-fermions when the dimensionless coupling
constant βe2 has the special value 2 [16, 17]. In the thermodynamic limit, the two-body
Ursell function of mobile particles at distance r is

U(r) = −n2 exp(−πnr2), (5.1)

where n is the particle density. All many-body Ursell functions are known at the free-
fermion point, too.

The potential-potential correlation function can be calculated in close analogy with the
previous steps outlined between (4.2)–(4.8). Substituting the charge correlation function

〈ρ̂(0)ρ̂(r2)〉T = −e2n2 exp(−πnr2
2 ) + nδ(r2) (5.2)

into the relation (4.5) and using an integration by parts, one gets

∫
dr2 v(r1 − r2)〈ρ̂(0)ρ̂(r2)〉T = e2n

2
�(0,πnr2

1 ), (5.3)

where

�(x, t) =
∫ ∞

t

ds sx−1e−s (5.4)

is the incomplete Gamma function. From (4.2), one thus obtains

β〈φ̂(0)φ̂(r)〉T = − ln r + 1

2
[e−πnr2 − (1 + πnr2)�(0,πnr2)]. (5.5)

This result has the correct large-distance asymptotic (4.9). In the zero-distance limit, it yields

β〈φ̂2〉T = 1

2
[1 + C + ln(πn)]. (5.6)

Note that the large-distance behavior (4.9) is universal, while the zero-distance limit (4.11)
or (5.6) depends on the coupling constant βe2.

All potential moments are available for the present system due to the knowledge of the
induced charge density around the guest charge [1, 18]:

ρ(r|Ze,0) = −en
�(Z,πnr2)

�(Z)
, Z ≥ 0. (5.7)

By using the relation (3.2), one obtains after some algebra [18]

−βμex
Ze = Z2

2
[1 + ln(πn)] −

∫ Z

0
dZ′ Z′ψ(1 + Z′), (5.8)

where ψ is the psi-function defined by

ψ(x) = d

dx
ln�(x). (5.9)
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Its Taylor expansion around x = 1 reads [14]

ψ(1 + x) = −C +
∞∑
l=2

(−1)lζ(l)xl−1, (5.10)

where

ζ(l) =
∞∑

k=1

1

kl
(5.11)

is the Riemann zeta function. Considering the expansion (5.10) in (5.8) gives

−βμex
Ze = Z2

2
[1 + C + ln(πn)] +

∞∑
l=3

(−1)lZl

l
ζ(l − 1). (5.12)

The comparison of this expansion with the cumulant expansion (3.10) implies

〈φ̂2〉T = e2

4
[1 + C + ln(πn)], (5.13)

〈φ̂l〉T = el

2l
(l − 1)!ζ(l − 1), l ≥ 3. (5.14)

Note that the second-moment formula (5.13) is identical to the previous one (5.6) derived
by the direct calculation from the definition.

6 Two-Component Plasma

6.1 Collapse Point βe2 = 2

The 2D TCP of ±e charges is mappable for the special value of the coupling constant
βe2 = 2 onto the Thirring model at the free-fermion point [19, 20]. Although this coupling
corresponds to the collapse threshold for the pointlike particles, and therefore for a fixed fu-
gacity z the particle density is infinite, the Ursell functions are well defined. Their two-body
forms read

U±,±(r) = −
(

m2

2π

)2

K2
0 (mr), U±,∓(r) =

(
m2

2π

)2

K2
1 (mr), (6.1)

where m = 2πz. All many-body Ursell functions are also known.
Substituting the charge correlation function

〈ρ̂(0)ρ̂(r2)〉T = −2e2

(
m2

2π

)2

[K2
0 (mr2) + K2

1 (mr2)] (6.2)

into the relation (4.5) and integrating by parts leads to

∫
dr2 v(r1 − r2)〈ρ̂(0)ρ̂(r2)〉T = e2 m2

2π
K2

0 (mr1). (6.3)
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From (4.2), one finds that

β〈φ̂(0)φ̂(r)〉T = − ln r + (mr)2

2
[2K2

1 (mr) − K2
0 (mr) − K0(mr)K2(mr)]. (6.4)

This result has the correct large-distance asymptotic (4.9). In the zero-distance limit, it gives

β〈φ̂2〉T = 1 + C + ln(πz). (6.5)

6.2 Stability Region 0 ≤ βe2 < 2

The system of pointlike ±e charged particles is stable against the collapse of positive-
negative pairs of charges provided that the corresponding Boltzmann weight exp[βe2v(r)] =
r−βe2

can be integrated at short 2D distances, i.e. when βe2 < 2. The equilibrium statistical
mechanics of the neutral TCP is usually studied in the grand canonical ensemble, charac-
terized by the particle fugacities z+ = z− = z. The full thermodynamics of this system is
known [21, 22].

In the stability range of βe2 < 2, the grand partition function Ξ(z) of the 2D TCP can be
turned via the Hubbard-Stratonovich transformation (see, e.g., Ref. [23]) into

Ξ(z) =
∫
Dϕ exp[−S(z)]∫
Dϕ exp[−S(0)] , (6.6)

where

S(z) =
∫

dr
[

1

16π
(∇ϕ)2 − 2z cos(bϕ)

]
(6.7)

is the Euclidean action of the (1 + 1)-dimensional sine-Gordon model. Here, ϕ(r) is a real
scalar field and

∫
Dϕ denotes the functional integration over this field. The sine-Gordon

coupling constant b depends on the Coulomb coupling constant via

b =
√

βe2

4
. (6.8)

The fugacity z is renormalized by the diverging self-energy term exp[βv(0)/2] which dis-
appears from statistical relations under the conformal short-distance normalization of the
exponential fields [21, 22]

〈e−ibϕ(r)e−ibϕ(r′)〉sG ∼ |r − r′|−4b2
as |r − r′| → 0, (6.9)

where 〈· · ·〉sG denotes the average with the sine-Gordon action (6.7). The species densities
are expressible in the sine-Gordon format as follows

n± = z〈e±ibϕ〉sG. (6.10)

The charge neutrality of the system n+ = n− = n/2 is ensured by the obvious symmetry
relation 〈eibϕ〉sG = 〈e−ibϕ〉sG.

The excess chemical potential of the particle species forming the plasma is given by

exp(−βμex
±e) = n±

z
= 〈e±ibϕ〉sG. (6.11)
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It was shown in Ref. [24] that the excess chemical potential of a guest charge Ze immersed
in the plasma is expressible in the sine-Gordon format as follows

exp(−βμex
Ze) = 〈eiZbϕ〉sG. (6.12)

When Z = ±1, one recovers the previous result (6.11) valid for the plasma constituents.
Due to the symmetry relation 〈eiaϕ〉sG = 〈e−iaϕ〉sG valid for any real-valued a, it holds that
μex

Ze = μex
−Ze.

The (1 + 1)-dimensional sine-Gordon model is an integrable field theory [25]. Due to
a recent progress in the method of the Thermodynamic Bethe ansatz, a general formula
for the expectation value of the exponential field 〈e−iaφ〉 was derived by Lukyanov and
Zamolodchikov [26]. In the notation of (6.12), a = Zb, their formula reads

〈eiZbϕ〉sG =
[

πz�(1 − b2)

�(b2)

](Zb)2/(1−b2)

exp[Ib(Z)] (6.13)

with

Ib(Z) =
∫ ∞

0

dt

t

[
sinh2(2Zb2t)

2 sinh(b2t) sinh(t) cosh[(1 − b2)t] − 2Z2b2e−2t

]
. (6.14)

The interaction Boltzmann factor of the guest charge Ze with an opposite plasma counterion
at distance r , r−βe2|Z|, is integrable at small 2D distances r if β|Z|e2 < 2, i.e. |Z| < 1/(2b2);
this is indeed the condition for the integral (6.14) to be finite, so that the couple of (6.13)
and (6.14) passes the collapse test. Finally, using (6.13) and (6.14) in (6.12), one arrives at

−βμex
Ze = Z2 b2

1 − b2
ln

[
πz�(1 − b2)

�(b2)

]
+ Ib(Z). (6.15)

We have to keep in mind that b2 = βe2/4.
Comparing the cumulant expansion (3.10) with the result (6.15), in which the integral

Ib(Z) (6.14) is expanded in powers of Z, one gets the explicit forms of the potential mo-
ments:

〈φ̂2〉T = e2

8b2(1 − b2)
ln

[
πz�(1 − b2)

�(b2)

]

+ e2

4

∫ ∞

0

dt

t

[
t2

sinh(b2t) sinh(t) cosh[(1 − b2)t] − 1

b2
e−2t

]
, (6.16)

〈φ̂2l〉T = e2l

4

∫ ∞

0
dt

t2l−1

sinh(b2t) sinh(t) cosh[(1 − b2)t] , l = 2,3, . . . . (6.17)

The odd potential moments vanish for the symmetric TCP.
In the high-temperature limit βe2 → 0 (b2 → 0), (6.15) taken with z ∼ n/2 reduces to

the previous one (4.13); one retrieves the second moment (4.11) and that all higher moments
vanish, as it should be. From (6.17), in the limit b2 → 0, one finds

β〈φ̂2l〉T = e2(l−1)8
4l − 2

42l
(2l − 2)!ζ(2l − 1), l = 2,3, . . . . (6.18)

These expressions go beyond the Debye-Hückel limit of (6.15).
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At the collapse point βe2 = 2 (b2 = 1/2), the second-moment formula (6.16) reproduces
the previous result (6.5) and the higher-order moments (6.17) take forms

〈φ̂2l〉T = e2l 2

4l
(2l − 1)!ζ(2l − 1), l = 2,3, . . . . (6.19)

All potential moments are finite also in the collapse region, up to the Kosterlitz-Thouless
critical point βe2 = 4 (b2 = 1). We conjecture that, in the case of the hard-core regularization
of the Coulomb potential, the obtained result correspond to the limit of a vanishing hard core.

We end up this section by a comment about the possibility of a relationship between
the electrostatic potential φ̂ and the sine-Gordon field variable ϕ. This relationship was
suggested in many articles, see, e.g., Ref. [27]. The comparison of (3.11) and (6.12) implies

〈ϕ2l〉sG = (−1)l(4β)l〈φ̂2l〉. (6.20)

This means that, in view of one-point fluctuations, the fields φ̂ and ϕ differ from one another
only by an irrelevant scaling factor. On the other hand, the large-distance asymptotic of the
potential-potential correlations (4.9) is fundamentally different from the one of 〈ϕ(0)ϕ(r)〉T

The latter two-point correlation function has, like in every massive field theory, a short-range
exponential decay as r → ∞. We conclude that the electrostatic-potential interpretation of
the sine-Gordon field is not correct.

7 Conclusion

The general study of a mixture of M species of mobile particles, which may be embedded
in a uniform background, is simpler in two dimensions; the BGY hierarchy suffices for
deriving the general sum rule (2.12) relating the second moments and the zeroth moments
of the two-body correlations. Further work should be possible about this mixture.
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